Publications

Found 502 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Prochazkova, E.; Navrátil, R.; Janeba, Z.; Roithová, J.; Baszczynski, O. Reactive cyclic intermediates in the ProTide prodrugs activation: trapping the elusive pentavalent phosphorane. Organic & Biomolecular Chemistry 2019, 17 (2), 315-320 DOI: 10.1039/c8ob02870b.
Prener, L.; Baszczyňski, O.; Kaiser, M. Maxmilian; Dračínský, M.; Stepan, G.; Lee, Y. - J.; Brumshtein, B.; Yu, H.; Jansa, P.; Lansdon, E. B.; et al. Design and Synthesis of Novel HIV-1 NNRTIs with Bicyclic Cores and with Improved Physicochemical Properties. Journal of Medicinal Chemistry 2023, 66 (3), 1761-1777.
Prchalová, E.; Votruba, I.; Kotora, M. Sphingosine and clavaminol H derivatives bearing fluorinated chains and their cytotoxic activity. Journal of Fluorine Chemistry 2012, 141, 49-57 DOI: 10.1016/j.jfluchem.2012.06.005.
Prchalová, E.; Štěpánek, O.; Smrček, S.; Kotora, M. Medicinal applications of perfluoroalkylated chain-containing compounds. Future Medicinal Chemistry 2014, 6 (10), 1201-1229 DOI: 10.4155/fmc.14.53.
Popr, M.; Hybelbauerová, S.; Jindřich, J. Synthesis of 3I-O and 2I-O-monosubstituted derivatives of per-6-azido-β-cyclodextrin—potential molecular scaffolds. Carbohydrate Research 2012, 361, 148-154 DOI: 10.1016/j.carres.2012.09.003.
Popr, M.; Filippov, S. K.; Matushkin, N.; Dian, J.; Jindřich, J. Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives – their stability, complexation ability in solution or when deposited on solid anionic surface. Beilstein Journal of Organic Chemistry 2015, 11, 192-199 DOI: 10.3762/bjoc.11.20.
Popr, M.; Hybelbauerová, S.; Jindřich, J. A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanent positive charges. Beilstein Journal of Organic Chemistry 2014, 10, 1390-1396 DOI: 10.3762/bjoc.10.142.
Pickard, C. J.; Salamat, A.; Bojdys, M. J.; Needs, R. J.; McMillan, P. F. Carbon nitride frameworks and dense crystalline polymorphs. Physical Review B 2016, 94 (9) DOI: 10.1103/PhysRevB.94.094104.
Perlikova, P.; Rylova, G.; Naus, P.; Elbert, T.; Tloustova, E.; Bourderioux, A.; Slavetinska, L. P.; Motyka, K.; Dolezal, D.; Znojek, P.; et al. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Molecular Cancer Therapeutics 2016, 15 (5), 922-937 DOI: 10.1158/1535-7163.MCT-14-0933.
Perlíková, P.; Konečný, P.; Nauš, P.; Snášel, J.; Votruba, I.; Džubák, P.; Pichová, I.; Hajdúch, M.; Hocek, M. 6-Alkyl-, 6-aryl- or 6-hetaryl-7-deazapurine ribonucleosides as inhibitors of human or MTB adenosine kinase and potential antimycobacterial agents. MedChemComm 2013, 4 (11), 1497 DOI: 10.1039/c3md00232b.
Perlíková, P.; Eberlin, L.; Ménová, P.; Raindlová, V.; Slavětínská, L.; Tloušťová, E.; Bahador, G.; Lee, Y. - J.; Hocek, M. Synthesis and Cytostatic and Antiviral Activities of 2′-Deoxy-2′,2′-difluororibo- and 2′-Deoxy-2′-fluororibonucleosides Derived from 7-(Het)aryl-7-deazaadenines. ChemMedChem 2013, 8 (5), 832-846 DOI: 10.1002/cmdc.201300047.
Perlíková, P.; Martínez, N. Jornet; Slavětínská, L.; Hocek, M. Synthesis of 2′-deoxy-2′-fluororibo- and 2′-deoxy-2′,2′-difluororibonucleosides derived from 6-(het)aryl-7-deazapurines. Tetrahedron 2012, 68 (39), 8300-8310 DOI: 10.1016/j.tet.2012.07.033.
Parkan, K.; Pohl, R.; Kotora, M. Cross-Coupling Reaction of Saccharide-Based Alkenyl Boronic Acids with Aryl Halides: The Synthesis of Bergenin. Chemistry - A European Journal 2014, 20 (15), 4414-4419 DOI: 10.1002/chem.201304304.
O
Osifová, Z.; Socha, O.; Dračínský, M. NMR-Challenge.com: Exploring the Most Common Mistakes in NMR Assignments. Journal of Chemical Education 2024, 101 (6), 2561-2569.
Osifová, Z.; Šála, M.; Dračínský, M. Hydrogen-Bonding Interactions of 8-Substituted Purine Derivatives. ACS Omega 2023, 8 (28), 25538-25548.
Osifová, Z.; Kalvoda, T.; Galgonek, J.; Culka, M.; Vondrášek, J.; Bouř, P.; Bednárová, L.; Andrushchenko, V.; Dračínský, M.; Rulíšek, L. What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments. Chemical Science 2024, 15 (2), 594-608.
Ortiz, M.; Jauset-Rubio, M.; Trummer, O.; Foessl, I.; Kodr, D.; Acero, J. Lluís; Botero, M. Luz; Biggs, P.; Lenartowicz, D.; Trajanoska, K.; et al. Generic Platform for the Multiplexed Targeted Electrochemical Detection of Osteoporosis-Associated Single Nucleotide Polymorphisms Using Recombinase Polymerase Solid-Phase Primer Elongation and Ferrocene-Modified Nucleoside Triphosphates. ACS Central Science 2023, 9 (8), 1591-1602.
Orosz, J. Máté; Ujj, D.; Kasal, P.; Benkovics, G.; Bálint, E. Continuous flow synthesis of 6-monoamino-6-monodeoxy-β-cyclodextrin. Beilstein Journal of Organic Chemistry 2023, 19 (Mar 9 2023), 294-302.
Olszewska, A.; Pohl, R.; Brázdová, M.; Fojta, M.; Hocek, M. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjugate Chemistry 2016, 27 (9), 2089-2094 DOI: 10.1021/acs.bioconjchem.6b00342.
Olszewska, A.; Dadová, J.; Mačková, M.; Hocek, M. Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases. Bioorganic & Medicinal Chemistry 2015, 23 (21), 6885-6890 DOI: 10.1016/j.bmc.2015.09.051.
xs sm md lg